This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

STERICALLY HINDERED 4-AMINO-3,5-DIALKYLBENZENETHIOL DERIVATIVES: SYNTHESIS AND CHARACTERIZATION

Stephen D. Pastor^a; Edward T. Hessell^a

^a Ciba Additives Research Department, Ciba-Geigy Corporation, Tarrytown, New York

To cite this Article Pastor, Stephen D. and Hessell, Edward T.(1996) 'STERICALLY HINDERED 4-AMINO-3,5-DIALKYLBENZENETHIOL DERIVATIVES: SYNTHESIS AND CHARACTERIZATION', Phosphorus, Sulfur, and Silicon and the Related Elements, 117: 1, 213 - 223

To link to this Article: DOI: 10.1080/10426509608038788 URL: http://dx.doi.org/10.1080/10426509608038788

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

STERICALLY HINDERED 4-AMINO-3,5-DIALKYLBENZENETHIOL DERIVATIVES: SYNTHESIS AND CHARACTERIZATION

STEPHEN D. PASTOR* and EDWARD T. HESSELL[†]

Ciba-Geigy Corporation, Ciba Additives Research Department, 540 White Plains Road, Tarrytown, New York 10591

(Received 15 April 1996; Revised 2 July 1996; In final form 2 July 1996)

The synthesis and characterization of a sterically hindered aminobenzenethiol 1 (4-NH₂-3- 1 Bu-5-MeC₆H₂SH) is described. The addition of 1 to electron-deficient olefins as well as the Mannich-type reaction of 1 with formaldehyde and a *sec*-amine was investigated. Phosphorothiolate derivatives were prepared by the reaction of the corresponding sulfenyl chloride 4-NH₂-3- 1 Bu-5-MeC₆H₂SCl with tricoordinate P(III) esters.

Keywords: 4;4'-thiobis(2;6-dialkylanilines); 4-amino-3;5-dialkylbenzenthiol; 4-aminobenzenesulfenyl chloride; phosphorothiolates; conjugate addition

Derivatives of 4-aminobenzenethiol are claimed in the patent literature as pesticides¹ and dye-fixation agents.² Anticholesteremic and hypolipemic activities have been found in 3;5-dialkyalkyl-4-amino-substituted arylthioalkanoic acids.³ Sterically hindered derivatives are claimed as antioxidants.⁴ Previously reported methodologies for the synthesis of alkylated aminobenzenethiol derivatives include the reaction of an alkylated aniline with thiocyanogen bromide followed by reduction;⁵ and the Lewis-acid catalyzed reaction of aromatic amines with disulfides.⁶ Our interest in the chemistry of hindered anilines; which resulted in the isolation of a stable N-aryl methanimine;⁷ led to the development of a

^{*}Corresponding author.

^{*}Present address: King Industries, Science Road, Norwalk, CT 06852.

convenient thiolation-reduction method for the synthesis of the sterically hindered 4-aminobenzenethiol 1.

RESULTS AND DISCUSSION

Orloff and Worrel reported that the reaction of 2,6-dialkylanilines with sulfur monochloride (S_2Cl_2), **2**, led to a mixture of 4,4'-polythiobis(2,6-dialkylanilines) from which the disulfide could be isolated.⁸ More recently, Inamoto *et al.* reported that the reaction of 2,4-di-*tert*-butyl-6-methylaniline with **2** in chloroform using triethylamine as an acid acceptor gave the corresponding *N*-thiosufinylaniline in 80% yield, whereas replacement of the 6-methyl substituent by an isopropyl group led to a significant reduction in yield.⁹ Significant differences in reactivity between the 2,4,6-trimethyl- and 2,4,6-tri-*tert*-butylanilines with **2** were observed.

A mixture of polysulfides 4 (n = 1,2,3,4) were obtained by the reaction of two equivalents of 2-tert-butyl-6-methylaniline 3 with one equivalent of 2 in the presence of two equivalents of triethylamine in chloroform solvent. Purification of the polysulfide mixture by recrystallization from nitromethane gave a yellow crystalline solid (47%) that was determined by mass spectral analysis to be predominately the disulfide 4 (n = 2).

Dissolving metal reductions of disulfides have been used in the preparation of thiols. $^{10-12}$ The hindered aminobenzenethiol 1 was obtained by the reduction of 4 (n = 2) with zinc in hydrochloric acid. In the 1 H NMR spectrum of 1, distinct signals were observed for the protons bonded to sulfur and nitrogen at δ 3.29 and δ 3.82, respectively.

The base-catalyzed addition of thiols to electron-deficient olefins is well known. ^{13–15} Kinetic studies on the base-catalyzed addition of thiols to maleic anhydride have been reported. ¹⁶ The triethylamine-catalyzed addition of 1 to the acrylate esters 5a, b gave the corresponding addition products 6a, b. The diadduct 8 was obtained by the reaction of the diacrylate 7 with two equivalents of 1. In the case of the reaction of 1 with 7, a small quantity of the monoadduct 9 was isolated by preparative HPLC. No addition reaction was observed between 1 and the methacrylate ester 5c when triethylamine was used as a catalyst. Kuwajima et al. reported that fluoride ion in aprotic media promoted the conjugate addition of thiols to substituted α,β -unsaturated carbonyl compounds. ¹⁷ Indeed, tetrabutylammonium fluoride ion was found to effectively catalyze the addition of 1 to 5c.

The succinate derivative 11 was readily prepared by the reaction of 1 with di-*n*-butyl maleate catalyzed by triethylamine. Previously we reported base catalyzed addition of sterically hindered 4-hydroxybenzenethiols to maleimides. ¹⁸ In a similar manner, the pyrrolidine-2,5-dione derivatives 13a-c were prepared by the base catalyzed addition of 1 to the maleimides 12a-c.

A mechanistic study of the Mannich-type reaction of amines with hemimer-captals derived from sterically hindered 4-hydroxybenzenethiols has been reported. 19,20 Grillot and Schaffrath reported. 1 that the reaction of thiophenols with formaldehyde and aryl amines gave aminomethyl aryl sulfides. The reaction of 1 with formaldehyde and the diarylamine 14 gave the sulfide 15 in 45% chromatographic yield.

Denney et al. have studied the mechanism of the reaction of phosphites with benzenesulfenyl chloride. The stereochemical outcome of the reaction was consistent with a phosphonium ion intermediate formed by nucleophilic attack of the lone pair of electrons on phosphorus at sulfur. The reaction of a sterically hindered 4-hydroxybenzenesulfenyl chloride with sec-amines led to an unexpected dimerization reaction. The corresponding reaction with a trialkyl phosphite gave the expected Arbusov product. Ullerly Sulfenyl chlorides have been prepared by the reaction of a disulfide with elemental chlorine. The sulfenyl chloride 16 was prepared in situ by reaction of the disufide 4 (n = 2) with chlorine gas at -40° C in toluene solution. The reaction of 16 with the phosphites 17a,b gave the corresponding phosphorothiolates 18a,b.

In summary, electrophilic aromatic substitution is observed in the reaction of 3 with 2 without significant competitive reaction at nitrogen. A reasonable explanation of this observation is that steric hindrance provided by the methyl and tert-butyl substitution ortho to the amino substituent of 3 minimizes the reactivity at nitrogen. This rational also provides an explanation for the observed reactivity of the aminobenzenethiol 1. The in situ generation and subsequent reaction of the sulfenyl chloride 16 is noteworthy, particularly in light of the known propensity of hydroxyarenesulfenyl chlorides for rapid self-condensation. 26,27

EXPERIMENTAL

All melting points were determined in open capillary tubes with a Thomas-Hoover melting point apparatus and are uncorrected. MS were obtained on a Finnegan Model 8200 mass spectrometer. IR spectra were recorded on a Perkin-Elmer 1300 spectrophotometer, and reported peak absorptions are estimated to be accurate to ±10 cm⁻¹. ¹H NMR (90 MHz) spectra were taken on a JEOL Model FX-900 spectrometer. All ¹H chemical shifts are reported in ppm relative to tetramethylsilane, where a positive sign is downfield from the standard. Significant ¹H NMR data are tabulated in the following order: multiplicity (m, multiplet; s, singlet; d, doublet; t, triplet; dd, doublet of doublets; dq, doublet of quartets; dt, doublet of triplets), atom assignments, coupling constant in Hertz, and number of protons. Merck silica gel 60 (200-400 mesh) was used for column chromatography. Merck precoated (0.25 mm) silica gel F-254 plates were used for TLC. Reagents were purchased from commercial laboratory supply houses. A sample of 2-methyl-6-tert-butylaniline was kindly provided by Ethyl Corporation. Solvents were dried prior to use when necessary with appropriate drying agents. Reactions were carried out in flame-dried apparatus under a dry inert atmosphere of either nitrogen or argon. Elemental analyses were performed by the Analytical Research Department, Ciba-Geigy Corporation.

3-tert-Butyl-5-methyl-4-aminobenzenethiol, (1). To a solution of 35.0 g (214 mmol) of 3 and 29.6 mL of triethylamine (214 mmol) in 200 mL of chloroform at 10°C was added dropwise a solution of 8.6 mL (107 mmol) of 2 in 200 mL of chloroform.²⁸ The reaction mixture was stirred for 18 h at room temperature and then to the resultant mixture was added 200 mL of methylene chloride. The reaction mixture was washed sequentially once with a 5% aqueous sodium hydroxide solution (400 mL) followed by three times with water (3 × 300 mL). The organic phase was dried with anhydrous sodium sulfate and the volatiles removed in vacuo. The residue was recrystallized twice from ni-

tromethane to give 19.5 g (47%) of yellow crystals, 4 (n = 2), mp 119–120°C. 1 H NMR (CDCl₃) δ 1.43 (s, 18 H), 2.18 (s, 6 H), 3.93 (s, NH₂, 4 H), 7.18 (d, 2 H), 7.27 (m, 2 H). The disulfide 4 (n = 2) was converted to 1 without further purification.

1 +
$$R$$
OE

(CH₃CH₂)₃N

6

a. R = H; E = Me
b. R = H; E = n -C₁₈H₃₇
c. R = E = Me

c. R = E = Me

To a stirred mixture of 5.0 g of 4 (n = 2), 75 g of zinc dust, 10 mL of ethanol, and 20 mL of toluene was added dropwise over a three hour period 40 mL of concentrated hydrochloric acid. The reaction mixture was stirred for 24 h at room temperature and then the acidic mixture was cautiously neutralized with 5% aqueous sodium hydroxide. The heterogeneous reaction mixture was extracted with diethyl ether and the extracts were dried over anhydrous sodium sulfate. The solvent was removed *in vacuo*. To the residue was added 20 mL of

heptane and the resultant solid²⁹ was removed by filtration. The heptane was removed *in vacuo* and the residue distilled to give 1.3 g (26%) of 1 as a colorless liquid, bp 170°C. (0.3 mm). ¹H NMR (CDCl₃) δ 1.42 (s, 9 H), 2.13 (s, 3 H), 3.29 (s, SH, 1 H), 3.82 (broad s, NH₂, 2 H), 7.02 (d, 1 H), 7.16 (d, 1 H); IR (1% in CH₂Cl₂) ν 3510, 3420 (NH₂) and 2550 (SH) cm⁻¹. Anal. Calcd for C₁₁H₁₇NS: C, 67.6; H, 8.8; N, 7.2. Found: C, 67.6; H, 9.0; N, 7.3.

Methyl 3-(4-Amino-3-Tert-Butyl-5-Methylphenylthio)Propionate, (6a). To a stirred solution of 1.00 g (5.1 mmol) of 1 and 0.05 g (0.5 mmol) of triethylamine in 5 mL of toluene at -5° C was added dropwise a solution of 0.44 g (5.1 mmol) of 5a in 5 mL of toluene. The reaction mixture was stirred for 24 h at room temperature. The solvent was removed *in vacuo* and the residue was purified by flash chromatography³⁰ (silica gel, 95.5, heptane:ethyl acetate eluent) to give 0.95 g (66%) of a colorless liquid. ¹H NMR (CDCl₃) δ 1.42 (s, 9 H), 2.13 (s, 3 H), 2.56 (t, 2 H), 2.98 (t, 2 H), 3.67 (s, 3 H), 3.89 (exchangeable s, 2 H), 7.12 (m, 2 H); IR (1% in CH₂Cl₂) ν 3520, 3420 (NH₂), 1730 (C=O) cm⁻¹. Anal. Calcd for C₁₅H₂₃NO₂S: C, 64.0; H, 8.2; N, 5.0. Found: C, 64.0; H, 8.4; N, 5.1.

Octadecyl 3-(4-Amino-3-Tert-Butyl-5-Methylphenylthio)Propionate, (6b). The procedure for compound 6a was repeated using 4.5 g (23 mmol) of 1, 7.5 g (23 mmol) of 5b, and 0.2 g (2 mmol) of triethylamine in 50 mL of toluene (50°C for 18 hrs). The solvent was removed in vacuo and the residue was purified by preparative HPLC (silica gel, 9:1, heptane:ethyl acetate eluent) to give 8.6 g (72%) of a colorless liquid. ¹H NMR (CDC1₃) δ 0.89 (t, 3 H), 1.24 (s. 32 H), 1.42 (s. 9 H), 2.13 (s, 3 H), 2.53 (t. 2 H), 3.00 (t. 2 H), 3.80 (exchangeable s, 2 H), 4.06 (t, 2 H), 7.12 (d, 1 H), 7.24 (d, 1 H). Anal. Calcd for $C_{32}H_{57}NO_2S$: C, 73.9; H, 11.0; N, 2.7. Found: C, 73.7; H, 11.2, N. 2.6.

Methyl-3-(4-Amino-3-Tert-Butyl-5-Methylphenylthio)-2-Methylpropionate, (6c). To a stirred solution of 1.00 g (5.1 mmol) of 1 and 0.15 g (0.5 mmol) of tetra-butylammonium fluoride in 5 mL of toluene at -5°C was added dropwise a solution of 0.51 g (5.1 mmol) of 5c in 5 mL of toluene. The reaction mixture was stirred for 24 hrs at rt. The reaction mixture was added to 50 mL of water, and the resultant phases separated. The organic phase was dried over anhydrous sodium sulfate. The volatiles were removed *in vacuo* and the residue was purified by flash column chromatography²⁹ (silica gel, 4:1, heptane:ethyl acetate eluent) to give 0.28 g (18%) of a colorless liquid. ¹H NMR (CDCL₃) δ 1.24 (d, 3 H), 1.43 (s, 9 H), 2.18 (s, 3 H), 2.65 (m, 1 H), 2.77 (m, 1 H), 3.11 (m, 1 H) 3.68 (s, 3 H), 3.89 (exchangeable s, 2 H), 7.11 (d, 2 H), 7.29 (d, 1 H); IR (1% in CH₂Cl₂) ν 3520, 3420 (NH₂), 1730 (C=O) cm⁻¹. Anal. Calcd for C₁₆H₂₅NO₂S: C, 65.1; H, 8.5; N, 4.7. Found: C, 65.4; H, 8.6; N, 4.7.

1,6-Hexanediolbis(3-(4-Amino-3-Tert-Butyl-5-Methylphenylthio)Propionate), (8). The procedure for compound 5a was repeated using 4.9 g (25 mmol) of 1, 2.8 g (12 mmol) of 7 and 0.2 g (2 mmol) of triethylamine in 25 mL of toluene (50°C for 18 h). The solvent was removed *in vacuo* and the residue was purified by preparative HPLC (silica gel, 3:1, heptane:ethylacetate eluent) to give 3.4 g (44%) of a colorless liquid. 1 H NMR (CDC1₃) δ 1.41 (overlapping m, 8 H), 1.42 (s, 18 H), 2.13 (s, 6 H), 2.57 (t, 4 H), 3.02 (t, 4 H), 3.91 (exchangeable s, 4 H), 4.08 (t, 4 H), 7.11 (d, 2 H); 7.24 (d, 2 H); IR (1% in CH₂Cl₂) ν 3520, 3420 (NH₂), 1720 (C=O) cm⁻¹. Anal. Calcd for C₃₄H₅₂N₂O₄S: C, 66.2; H, 8.5: N, 4.5. Found: C, 66.2; H, 8.5; N, 4.4.

1-(4-Amino-3-Tert-Butyl-5-Methylphenylthio)-3,12-Dioxa-4,11-Dioxo-13-Tetradecene, (9). During the HPLC purification of **8**, 1.9 g of compound **9** was isolated by HPLC as a colorless liquid. 1 H NMR (CDC1₃) δ 1.41 (overlapping m, 8 H), 1.42 (s, 9 H), 2.13 (s, 3 H), 2.57 (t, 2 H), 3.02 (t, 2 H), 3.91 (exchangeable s, 2 H), 4.08 (overlapping m, 4 H), 6.13 (m, 3 H), 7,20 (m, 2 H); IR (1% in CH₂Cl₂) ν 3520, 3420 (NH₂), 1720 (C=O) cm⁻¹. Anal. Calcd for C₂₃H₃₅NO₄S: C, 65.5; H, 8.4: N, 3.3. Found: C, 65.7; H, 8.1; N, 3.6.

Di-n-butyl 2-(4-Amino-4-Tert-Butyl-5-Methylphenylthio)Succinate, (11). To a stirred solution of 1.00 g (5.1 mmol) of 1 and 0.05 g (0.5 mmol) of triethylamine in 5 mL of toluene at room temperature was added dropwise a solution of 1.16 g (5.1 mmol) of 10 in 5 mL of toluene. The reaction mixture was stirred for 18 h at rt. The solvent was removed *in vacuo* and the crude product was purified by flash column chromatography (silica gel, 85:15, heptane:ethylacetate eluent) to give 0.60 g (28%) of a colorless liquid. ¹H NMR (CDCL₃) δ 0.91 (t, δ H, 1.41 (overlapping m, δ H), 1.42 (s, δ H), 2.13 (s, δ H), 2.64 (dd, δ J_{HCCH} = 6.4 Hz, δ J_{HCCH} = 8.8 Hz, 1 H), 2.93 (dd, δ J_{HCCH} = 6.4 Hz, δ J_{HCH} = 16.4 Hz, 1 H), 3.84 (dd, δ J_{HCCH} = 8.8 Hz, δ J_{HCH} = 16.4 Hz, 1 H), 4.08 (t, δ H), 7.11 (d, 1 H); 7.24 (d, 1 H); IR (1% in CH₂Cl₂) δ 3520, 3420 (NH₂), 1730 (C=O) cm⁻¹. Anal. Calcd for C₂₃H₃₇NO₄S: C, 65.2; H, 8.8; N, 3.3. Found: C, 64.8, H, 8.7; N, 3.2.

3-(4-Amino-3-*Tert*-**Butyl-5-Methylphenylthio)-N-Methylpyrrolidine-2,5-dione, (13a).** The procedure for compound 11 was repeated using 1.0 g (5 mmol) of 1 0.6 g (5 mmol) of 12a, and 0.1 g (1 mmol) of triethylamine in 10 mL of toluene (50°C for 18 h). The solvent was removed *in vacuo* and the residue was purified by flash chromatography (silica gel, 3:2, heptane:ethyl acetate eluent) followed by recrystallization from a heptane:toluene solvent mixture to give 0.8 g (51%) of a white solid; m.p. 92–94°C. ¹H NMR (CDCl₃) δ 1.37 (s, 9 H), 2.08 (s, 3 H), 2.66 (dd, 1 H), 2.80 (s, 3 H), 3.06 (dd, 1 H), 3.82 (dd, 1 H), 4.02 (exchangeable s, 2 H), 7.11 (d, 1 H); 7.24 (d, 1 H); IR (1% in CH₂Cl₂)

 ν 3520, 3430 (NH₂), 1780, 1710 (C=O) cm⁻¹. Anal. Calcd for C₁₆H₂₂N₂O₂S: C, 62.7; H, 7.2; N, 9.1 Found: C, 62.6; H, 7.0; N, 9.0.

3-(4-Amino-3-Tert-Butyl-5-Methylphenylthio)-N-Octadecylpyrrolidine-2,5-Dione, (13b). The procedure for compound 11 was repeated using 2.8 g (14 mmol) of 1, 5.0 g (14 mmol) of 12b, and 0.1 g (1 mmol) of triethylamine in 50 mL of toluene (50° for 18 h). The solvent was removed *in vacuo* and the residue

was purified by preparative HPLC (silica gel, 4:1, heptane:ethyl acetate eluent) to give 4.3 g (55%) of a caramel-colored liquid. ¹H NMR (CDCl₃) δ 0.84 (t, 3 H), 1.20 (m, 32 H), 1.35 (s, 9 H), 2.08 (s, 3 H), 2.62 (dd, 1 H), 3.02 (dd, 1 H), 3.28 (t, 2 H) 3.77 (dd, 1 H) 3.95 (exchangeable s, 2 H), 7.11 (d, 1 H); 7.24 (d, 1 H); IR (1% in CH₂Cl₂) ν 3520, 3430 (NH₂), 1780, 1700 (C=O) cm⁻¹. Anal. Calcd for C₃₃H₅₆N₂O₂S: C, 72.7; H, 10.4; N, 5.1. Found: C, 72.3; H, 10.5; N, 5.1.

3-(4-Amino-3-Tert-Butyl-5-Methylphenylthio)-N-Phenylpyrrolidine-2,5-

Dione, (13c). The procedure for compound **11** was repeated using 1.0 g (5 mmol) of **1,** 0.9 g (5 mmol) of **12c**, and 0.1 g (1 mmol) of triethylamine in 10 mL of toluene was heated at 50°C for 18 hrs. The solvent was removed in vacuo and the residue was purified by flash chromatography (silica gel, ethyl acetate eluent) to give 0.7 g (37%) of a white solid; m.p. 126–128°C. ¹H NMR (CDC1₃) δ 1.40 (s, 9 H), 2.13 (s, 3 H), 2.93 (dd, 1 H), 3.33 (dd, 1 H), 2.97 (dd, 1 H), 4.06 (exchangeable (s, 2 H), 6.88–7.51 (overlapping m, 7 H); IR (1% in CH₂Cl₂) ν 3520, 3430 (NH₂), 1780, 1720 (C=O) cm⁻¹. Anal. Calcd for C₂₁H₂₄N₂O₂S: C, 68.5; H, 6.6; N, 7.6. Found: C, 68.3; H, 6.4; N, 7.5.

N-(4-Amino-3-Tert-Butyl-5-Methylphenylthiomethyl)-N,N-

Diphenylamine, (15). To a stirred solution of 4.5 g (23 mmol) of 1 and 3.9 g (23 mmol) of diphenylamine in 30 mL of methanol at -5° C was added 0.9 g (23 mmol) of formaldehyde as a 37% aqueous solution (1.9 mL). The reaction mixture was stirred for 72 h at room temperature and then the mixture was heated for 5 hrs at 50–55°C. The solvent was removed *in vacuo* and the residue was purified by flash column chromatography (silica gel, 9:1, heptane:ethyl acetate eluent) to give 3.9 g (45%) of a colorless liquid. ¹H NMR (CDC1₃) δ 1.36 (s, 9 H), 2.04 (s, 3 H), 3.84 (exchangeable s, 2 H), 5.11 (s, 2 H), 6.80–7.29 (overlapping m, 12 H), IR (1% in CH₂Cl₂) ν 3520, 3420 (NH₂) cm⁻¹. Anal. Calcd for C₂₄H₂₈N₂S: C, 76.6; H, 7.5; N, 7.4. Found: C, 76.3; H, 7.5; N, 7.3.

S-(4-Amino-3-Tert-Butyl-5-Methylphenyl)-0,0-Dimethylphosphorothiolate, (18a). To a stirred suspension of 15.5 g (40 mmol) of 4 (n = 2) in 50 mL of toluene at -40° C was introduced 3.4 g (48 mmol) of elemental chlorine through a gas inlet tube below the surface of the reaction mixture over a 15 to 20 min period. The reaction mixture was stirred for 15 min and then to it was added 10.9 g (88 mmol) of 17a. The reaction mixture was stirred for 24 h at room temperature and then any precipitate was removed by filtration. The solvent was removed in vacuo and the residue was purified by preparative HPLC (silica gel, 1:1, heptane:ethyl acetate) followed by recrystallization from a heptane:toluene solvent mixture to give 2.6 g (27%) of a white solid; m.p. $85-88^{\circ}$ C. ¹H NMR (CDC1₃) 81.42 (s, 9 H), 2.13 (s, 3 H), 3.82 (d, 6 H), 4.00 (exchangeble s, 2 H), 7.15 (d, 1 H), 7.33 (d, 1 H); IR (1% in CH₂Cl₂) ν 3520,

3420 (NH₂) cm⁻¹. Anal. Calcd for $C_{13}H_{22}NO_3PS$: C, 51.5; H, 7.3; N, 4.6. Found: C, 51.1; H, 7.3; N, 4.6.

S-(4-Amino-3-Tert-Butyl-5-Methylphenyl)-0,0-Di-N-Butylphosphorothiolate, (18b). The procedure for compound 18a was repeated using 15.5 g (40 mmol) of 4 (n = 2), 3.4 g (48 mmol) of elemental chlorine, and 22.0 g (88 mmol) of 17b in 50 mL of toluene. The reaction mixture was stirred for 24 hrs at rt and then any precipitate was removed by filtration. The solvent was removed in vacuo from the filtrate and the residue was purified by preparative HPLC (silica gel, 7:3, heptane:ethyl acetate) to give 13.5 g (43%) of a colorless liquid. 1 H NMR (CDC1₃) δ 0.89 (m, 6 H), 1.41 (overlapping m, 8 H), 1.42 (s, 9 H), 2.13 (s, 3 H), 4.04 (dt, 4 H), 7.20 (m, 2 H); IR (1% in CH₂Cl₂) ν 3520, 3420 (NH₂) cm⁻¹. Anal. Calcd for C₁₉H₃₄NO₃PS: C, 58.9; H, 8.8; N, 3.6. Found: C, 58.8; H, 8.9: N, 3.6.

Acknowledgments

The author thanks Ciba Additives for support and permission to publish this work, and Shiela Loggins (Ciba Additives Scientific Documentation Department) for on-line computer searches.

References and Notes

- J. Ehrenfreund, M. Boeger and J. Drabek, Eur. Pat. Appl. EP 302014 A1 (1989); Chem. Abstr. 110, 231295 (1989).
- [2] C. W. Greenhalgh, D. F. Newton, D. Eckersley, I. Cheetham, D. A. S. Phillips, K. Dunkerly, G. Williams and V. Chokshi, U. S. Patent 3,934,972 (1976); Chem. Abstr. 82, 99928 (1975).
- [3] E. R. Wagner and B. J. Allen, U. S. Patent 4,062,975 (1977); Chem. Abstr. 88, 89382 (1978).
- [4] (a) S. D. Pastor, U. S. Patent 5,145,970 Chem. Abstr. 118, 83264 (1992). (b) S. D. Pastor, U. S. Patent 5,321,067, Chem. Abstr. 118, 83264 (1994).
 (b) S. D. Pastor, U. S. Patent 5,321,067; Chem. Abstr. 118, 83264 (1994).
- [5] H. Kloosterziel and Backer, J. Recl. Trav. Chim. Pays-Bays 72, 655 (1953).
- [6] P. F. Ranken and B. G. McKinnie, J. Org. Chem. 54, 2985 (1989).
- [7] F. P. Cortolano, S. D. Pastor, R. Ravichandran and D. H. Steinberg, Tetrahedron Lett. 29, 5875 (1988).
- [8] (a) H. D. Orloff and C. J. Worrel, U. S. Patent 3,224,972; Chem. Abstr. 64, 6565 (1965). (b) For a general discussion of electrophilic aromatic substitution using sulfur halides, see March, J. Advanced Organic Chemistry; Wiley-Interscience: New York, 1992, pp 529-530. (c) For a recent example, see P. F. Ranken and B. G. McKinnie, J. Org. Chem. 54, 2985 (1989).
- [9] (a) Y. Inagaki, R. Okazaki and N. Inamoto, Bull. Chem. Soc. Japan 52, 1998 (1979).
 (b) Y. Inagaki, R. Okazaki and N. Inamoto, Bull. Chem. Soc. Japan 52, 2002 (1979).
 (c) Y. Inagaki, R. Okazaki, N. Inamoto, K. Yamada and H. Kawazura, Bull. Chem. Soc. Japan 52, 2008 (1979).
- [10] F. Bourgeois and A. Abraham, Rec. Trav. Chim. 30, 407 (1911).
- [11] W. B. Price and S. Smiles, J. Chem. Soc. 2372 (1928).
- [12] E. Fromm and H. Jörg, Ber. Deut. Chem. Ges. 58, 305 (1925).
- [13] C. D. Hurd and L. L. Gersheim, J. Am. Chem. Soc. 69, 2328 (1947).

- [14] E. A. I. Haiba, J. Org. Chem. 31, 776 (1966).
- [15] M. S. Kharasch and C. F. Fuchs, J. Org. Chem. 13, 97 (1948).
- [16] B. Dmuchovsky, F. B. Zienty and W. A. Vredenburgh, J. Org. Chem. 31, 865 (1966).
- [17] I. Kuwajima, T. Murofushi and E. Nakamura, Synthesis 602 (1976).
- [18] S. D. Pastor, E. T. Hessell, P. A. Odorisio and J. D. Spivack, J. Heterocycl. Chem. 22, 1195 (1985).
- [19] S. D. Pastor, P. A. Odorisio and R. Ravichandran, Phosphorus Sulfur 29, 67 (1986).
- [20] S. D. Pastor, R. Ravichandran, P. A. Odorisio and E. T. Hessell, *Phosphorus Sulfur* 37, 117 (1988).
- [21] G. F. Grillot and R. E. Schaffrath, J. Org. Chem. 24, 1035 (1959).
- [22] D. B. Denney and M. A. Moskal, *Phosphorus* 4, 77 (1974).
- [23] S. D. Pastor, J. Org. Chem. 49, 5260 (1984).
- [24] S. D. Pastor, J. D. Spivack, L. P. Steinhuebel and P. A. Odorisio, *Phosphorus Sulfur* 29, 31 (1986).
- [25] H. Brintzinger, K. Pfannstiel, H. Koddebusch and K. E. Kling, Chem. Ber. 83, 87 (1950).
- [26] C. Y. Meiers, G. Picciola, Tetrahedron Lett. 971 (1962).
- [27] S. Cabiddu, F. Ciuccatosta, M. T. Cocco, G. Loi and M. Secci, J. Heterocycl. Chem. 14, 123 (1977).
- [28] For leading references for the synthesis of 3, see J. P. Chupp and J. F. Olin, J. Org. Chem. 32, 2297 (1967).
- [29] The ¹H NMR (CDCl₃) of the solid was consistent with monosulfide 4 (n = 1): δ 1.40 (s, 18 H), 2.13 (s, 6 H), 3.84 (s, NH₂, 4 H), 7.02 (d, 2 H), 7.20 (d, 2 H).
- [30] C. W. Still, M. Kahn and A. Mitra, J. Org. Chem. 43, 2923 (1978).